Part Number Hot Search : 
GE33C AAP152 MMBD353 CX4005NL A1104E AD8031AR H21L1 00402
Product Description
Full Text Search
 

To Download V23990-P580-A46-P1-14 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  v23990-p580-a46-pm preliminary datasheet flowpim 1 3rd gen 1200v / 35a 3~ rectifier, brc, inverter, ntc very compact housing, easy to route igbt4 / emcon4 technology for low saturation losses and improved emc behaviour high performance with aln substrate motor drives power generation v23990-p580-a46-pm tj=25c, unless otherwise specified parameter symbol value unit peak repetitive reverse voltage v rrm 1600 v maximum junction temperature t j max 150 c inverter transistor t sc t j 150c 10 s v cc v ge =15v 800 v i 2 t forward current per diode surge forward current power dissipation per diode a w dc current t h =80c maximum junction temperature power dissipation per igbt v ge t j max p tot short circuit ratings gate-emitter peak voltage dc collector current c v a v p tot a types i 2 t-value maximum ratings i fav a 2 s i fsm condition t j =t j max features flowpim1 housing target applications schematic t p =10ms 320 input rectifier diode 50 v ce i cpulse i c collector-emitter break down voltage repetitive peak collector current 1200 20 w a t j =t j max t j =t j max t p limited by t j max t h =80c 82 510 t j =45c 175 t h =80c 49 t h =80c 152 105 copyright vincotech 1 revision: 1
v23990-p580-a46-pm preliminary datasheet tj=25c, unless otherwise specified parameter symbol value unit maximum ratings condition inverter diode brc transistor t sc t j 150c 10 s v cc v ge =15v 800 v brc diode thermal properties insulation properties v is t=2s dc voltage 4000 v min 12.7 mm min 12.7 mm clearance insulation voltage creepage distance t op operation temperature under switching condition -40?+(tjmax - 25) c storage temperature t stg -40?+125 c peak repetitive reverse voltage c maximum junction temperature t j max 175 t j =t j max t p limited by t j max a i f t h =80c t h =80c 50 121 p tot t j =t j max v rrm dc forward current peak repetitive reverse voltage i frm t j max repetitive peak forward current power dissipation per diode i cpuls t j =t j max i c v rrm p tot v ce power dissipation per diode p tot t j =t j max t j =t j max dc forward current i f repetitive peak forward current i frm t p limited by t j max t j =t j max w a v a v ge v w a 175 maximum junction temperature c dc collector current power dissipation per igbt repetitive peak collector current gate-emitter peak voltage maximum junction temperature short circuit ratings t j max v a v c w a collector-emitter break down voltage 175 t j =25c 1200 40 133 75 t j =25c 70 t p limited by t j max 59 t h =80c 1200 1200 20 t h =80c 20 20 t h =80c t h =80c copyright vincotech 2 revision: 1
v23990-p580-a46-pm preliminary datasheet parameter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max t j =25c 0.8 1.29 1.6 t j =125c 1.24 t j =25c 0.93 t j =125c 0.82 t j =25c 0.007 t j =125c 0.009 t j =25c 0.02 t j =125c 2 thermal resistance chip to heatsink per chip r thjh 0.85 thermal resistance chip to case per chip r thjc n/a t j =25c 5 5.8 6.5 t j =150c t j =25c 1.6 1.95 2.3 t j =150c 2.39 t j =25c 0.01 t j =150c t j =25c 200 t j =150c t j =25c 92 t j =150c 91.6 t j =25c 18 t j =150c 23.4 t j =25c 213 t j =150c 274 t j =25c 75.3 t j =150c 105 t j =25c 1.62 t j =150c 2.49 t j =25c 1.81 t j =150c 2.82 thermal resistance chip to heatsink per chip r thjh 0.62 thermal resistance chip to case per chip r thjc n/a t j =25c 1 1.83 2.2 t j =150c 1.8 t j =25c 68.9 t j =150c 78.7 t j =25c 150 t j =150c 277 t j =25c 3.93 t j =150c 7.47 di ( rec ) max t j =25c 4100 /d t t j =150c 2080 t j =25c 1.69 t j =150c 3.31 thermal resistance chip to heatsink per chip r thjh 0.78 thermal resistance chip to case per chip r thjc n/a k/w v pf mws ? k/w ns 270 155 ma ns 1950 rgoff=16 ? thermal foil thickness=76um kunze foil ku-alf5 thermal foil thickness=76um kunze foil ku-alf5 1500 25 0 35 600 35 0.0012 35 600 collector-emitter cut-off current incl. diode fall time turn-off delay time turn-on delay time rise time gate-emitter leakage current turn-on energy loss per pulse reverse recovered charge inverter diode 15 35 35 0 20 15 rgoff=16 ? 0 1200 15 a c mws a/ s 115 reverse current i r k/w v v ? ma 50 50 50 characteristic values forward voltage threshold voltage (for power loss calc. only) slope resistance (for power loss calc. only) v f v to r t input rectifier diode value conditions input capacitance output capacitance turn-off energy loss per pulse collector-emitter saturation voltage integrated gate resistor inverter transistor gate emitter threshold voltage e on e off i rrm c rss q gate diode forward voltage gate charge reverse recovery time reverse recovered energy peak rate of fall of recovery current c ies q rr t rr v f peak reverse recovery current reverse transfer capacitance v ce(sat) i ces r gint t d(on) vcc=960v f=1mhz erec c oss t f t r t d(off) vce=vge i ges v ge(th) 15 rgon=16 ? thermal foil thickness=76um kunze foil ku-alf5 v nc v na tj=25c - tj=25c copyright vincotech 3 revision: 1
v23990-p580-a46-pm preliminary datasheet parameter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max characteristic values value conditions t j =25c 5 5.8 6.5 t j =150c t j =25c 1.6 1.86 2.2 t j =150c 2.31 t j =25c 0.005 t j =150c t j =25c 200 t j =150c t j =25c 127 t j =150c 129 t j =25c 36 t j =150c 41.8 t j =25c 232 t j =150c 276 t j =25c 73.7 t j =150c 112 t j =25c 1.81 t j =150c 2.42 t j =25c 1.37 t j =150c 2.19 thermal resistance chip to heatsink per chip r thjh 0.71 thermal resistance chip to case per chip r thjc n/a t j =25c 1.3 1.85 2.2 t j =150c 1.76 t j =25c 5 t j =150c t j =25c 10.2 t j =150c 12.3 t j =25c 396 t j =150c 624 t j =25c 1.55 t j =150c 3.03 di ( rec ) max t j =25c 36 /d t t j =150c 32 t j =25c 0.63 t j =150c 1.30 thermal resistance chip to heatsink per chip r thjh 1.62 thermal resistance chip to case per chip r thjc n/a t j =25c 20.9 22 23.1 t j =125c 0.75 rgon=32 ? 115 1430 - 85 200 tj=25c tj=25c tj=25c 1200 600 600 25 600 10 10 10 15 15 15 20 thermistor thermal foil thickness=76um kunze foil ku-alf5 diode forward voltage reverse leakage current brc diode ma na ns mws vcc=960v 0 f=1mhz 15 0 ? 25 v v 15 0 thermal foil thickness=76um kunze foil ku-alf5 i ges rgoff=32 ? rgon=32 ? vce=vge reverse recovery energy v f i r t rr q rr e rec reverse recovery time i rrm i rated resistance r b-value b (25/50) tol. 3% operating current k power dissipation p mw 200 brc transistor k/w nc c oss e on output capacitance c rss c ies integrated gate resistor peak rate of fall of recovery current peak reverse recovery current reverse recovered charge reverse transfer capacitance e off turn-on energy loss per pulse turn-on delay time t f fall time t d(on) t r r gint turn-off energy loss per pulse q gate gate charge input capacitance rise time turn-off delay time t d(off) gate-emitter leakage current i ces v ge(th) v ce(sat) collector-emitter saturation voltage collector-emitter cut-off incl. diode gate emitter threshold voltage 0.00085 25 25 tj=25c tj=25c 3950 0.3 k/w ma k ? mws c v pf a ns a/ s a copyright vincotech 4 revision: 1
v23990-p580-a46-pm preliminary datasheet figure 1 output inverter igbt figure 2 output inverter igbt typical output characteristics i c = f(v ce ) i c = f(v ce ) at at t p = 250 s t p = 250 s t j = 25 c t j = 150 c v ge from 7 v to 17 v in steps of 1 v v ge from 7 v to 17 v in steps of 1 v figure 3 output inverter igbt figure 4 output inverter fred typical transfer characteristics typical diode forward current as i c = f(v ge ) a function of forward voltage i f = f(v f ) at at t p = 250 s t p = 250 s v ce = 10 v output inverter typical output characteristics 0 20 40 60 80 100 012345 v ce (v) i c (a) 0 10 20 30 40 036912 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 20 40 60 80 100 01234 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 20 40 60 80 100 012345 v ce (v) i c (a) copyright vincotech 5 revision: 1
v23990-p580-a46-pm preliminary datasheet figure 5 output inverter igbt figure 6 output inverter igbt typical switching energy losses typical switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) with an inductive load at with an inductive load at t j = 25/150 c t j = 25/150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 16 ? i c = 35 a r goff = 16 ? figure 7 output inverter igbt figure 8 output inverter igbt typical reverse recovery energy loss typical reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c )e rec = f(r g ) with an inductive load at with an inductive load at t j = 25/150 c t j = 25/150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 16 ? i c = 35 a output inverter e on t j = t jmax - 25c e off e on t j = 25c e off 0 1 2 3 4 5 6 7 8 0 10203040506070 i c (a) e (mws) e off t j = t jmax - 25c e on t j = 25c e on e off 0 1 2 3 4 5 6 7 8 0 10203040506070 r g ( ) e (mws) t j = t jmax -25c e rec t j = 25c e rec 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 0 10203040506070 i c (a) e (mws) t j = t jmax -25c e rec t j = 25c e rec 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 0 10203040506070 r g ( ) e (mws) copyright vincotech 6 revision: 1
v23990-p580-a46-pm preliminary datasheet figure 9 output inverter igbt figure 10 output inverter igbt typical switching times as a typical switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) with an inductive load at with an inductive load at t j = 150 c t j = 150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 16 ? i c = 35 a r goff = 16 ? figure 11 output inverter fred figure 12 output inverter fred typical reverse recovery time as a typical reverse recovery time as a function of collector current function of igbt turn on gate resistor t rr = f(ic) t rr = f(r gon ) at at t j = 25/150 c t j = 25/150 c v ce = 600 v v r = 600 v v ge = 15 v i f = 35 a r gon = 16 ? v ge = 15 v output inverter t doff t f t don t r 0.001 0.01 0.1 1 0 10203040506070 i c (a) t ( s) t rr t j = t jmax -25c t rr t j = 25c 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0 10203040506070 r gon ( ) t rr ( s) t doff t f t don t r 0.001 0.01 0.1 1 0 10203040506070 r g ( ) t ( s) t j = t jmax -25c t rr t rr t j = 25c 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0 10203040506070 i c (a) t rr ( s) copyright vincotech 7 revision: 1
v23990-p580-a46-pm preliminary datasheet figure 13 output inverter fred figure 14 output inverter fred typical reverse recovery charge as a typical reverse recovery charge as a function of collector current function of igbt turn on gate resistor q rr = f(i c )q rr = f(r gon ) at at at t j = 25/150 c t j = 25/150 c v ce = 600 v v r = 600 v v ge = 15 v i f = 35 a r gon = 16 ? v ge = 15 v figure 15 output inverter fred figure 16 output inverter fred typical reverse recovery current as a typical reverse recovery current as a function of collector current function of igbt turn on gate resistor i rrm = f(i c )i rrm = f(r gon ) at at t j = 25/150 c t j = 25/150 c v ce = 600 v v r = 600 v v ge = 15 v i f = 35 a r gon = 16 ? v ge = 15 v output inverter t j = t jmax - 25c i rrm t j = 25c i rrm 0 20 40 60 80 100 120 140 0 10203040506070 r gon ( ) i rrm (a) t j = t jmax -25c q rr t j = 25c q rr 0 2 4 6 8 10 0 10203040506070 r gon ( ) q rr ( c) t j = t jmax -25c i rrm t j = 25c i rrm 0 20 40 60 80 100 120 0 10203040506070 i c (a) i rrm (a) t j = t jmax -25c q rr t j = 25c q rr 0 2 4 6 8 10 0 10203040506070 i c (a) q rr ( c) copyright vincotech 8 revision: 1
v23990-p580-a46-pm preliminary datasheet figure 17 output inverter fred figure 18 output inverter fred typical rate of fall of forward typical rate of fall of forward and reverse recovery current as a and reverse recovery current as a function of collector current function of igbt turn on gate resistor di 0 /dt,di rec /dt = f(ic) di 0 /dt,di rec /dt = f(r gon ) at at t j = 25/150 c t j = 25/150 c v ce = 600 v v r = 600 v v ge = 15 v i f = 35 a r gon = 16 ? v ge = 15 v figure 19 output inverter igbt figure 20 output inverter fred igbt transient thermal impedance f red transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p )z thjh = f(t p ) at at d = t p / t d = t p / t r thjh = 0.62 k/w r thjh = 0.78 k/w igbt thermal model values fred thermal model values r (c/w) tau (s) r (c/w) tau (s) 0.04 3.6e+00 0.02 9.7e+00 0.09 5.8e-01 0.09 9.8e-01 0.31 8.1e-02 0.24 1.0e-01 0.09 1.7e-02 0.22 2.5e-02 0.06 1.6e-03 0.11 2.9e-03 0.03 2.8e-04 0.09 4.1e-04 output inverter t p (s) z thjh (k/w) 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 1 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z thjh (k/w) 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 1 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t j = t jmax - 25c di 0 /dt di rec /dt t j = 25c 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 0 10203040506070 r gon ( ) di rec / dt (a/ s) t j = t jmax - 25c di 0 /dt t j = 25c 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 0 10203040506070 i c (a) di rec / dt (a/ s) di rec /dt copyright vincotech 9 revision: 1
v23990-p580-a46-pm preliminary datasheet figure 21 output inverter igbt figure 22 output inverter igbt power dissipation as a collector current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i c = f(t h ) at at t j = 175 c single heating t j = 175 c overall heating v ge = 15 v figure 23 output inverter fred figure 24 output inverter fred power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i f = f(t h ) at at t j = 175 c single heating t j = 175 c overall heating output inverter 0 50 100 150 200 250 300 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 50 60 0 50 100 150 200 t h ( o c) i c (a) 0 50 100 150 200 250 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 50 60 0 50 100 150 200 t h ( o c) i f (a) copyright vincotech 10 revision: 1
v23990-p580-a46-pm preliminary datasheet figure 25 output inverter igbt figure 26 output inverter igbt safe operating area as a function gate voltage vs gate charge of collector-emitter voltage i c = f(v ce )v ge = f(q g ) at at d = single pulse i c = 35 a th = 80 oc v ge = 15 v t j =t jmax oc output inverter 0.1 1.0 10.0 100.0 1000.0 1 10 100 1000 10000 v ce (v) i c (a) 100us 1ms 10ms 100m s dc 0 2.5 5 7.5 10 12.5 15 17.5 0 25 50 75 100 125 150 175 200 q g (nc) v ge (v) 240 v 960 v copyright vincotech 11 revision: 1
v23990-p580-a46-pm preliminary datasheet figure 1 brake igbt figure 2 brake igbt typical output characteristics typical output characteristics i c = f(v ce ) i c = f(v ce ) at at t p = 250 s t p = 250 s t j = 25 c t j = 150 c v ge from 7 v to 17 v in steps of 1 v v ge from 7 v to 17 v in steps of 1 v figure 3 brake igbt figure 4 brake fred typical transfer characteristics typical diode forward current as i c = f(v ge ) a function of forward voltage i f = f(v f ) at at t p = 250 s t p = 250 s v ce = 10 v brake 0 20 40 60 80 012345 v ce (v) i c (a) 0 5 10 15 20 25 30 02468101214 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 5 10 15 20 25 30 00.511.522.533.5 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 20 40 60 80 012345 v ce (v) i c (a) copyright vincotech 12 revision: 1
v23990-p580-a46-pm preliminary datasheet figure 5 brake igbt figure 6 brake igbt typical switching energy losses typical switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) with an inductive load at with an inductive load at t j = 25/150 c t j = 25/150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 32 ? i c = 25 a r goff = 32 ? figure 7 brake igbt figure 8 brake igbt typical reverse recovery energy loss typical reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c )e rec = f(r g ) with an inductive load at with an inductive load at t j = 25/150 c t j = 25/150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 32 ? i c = 25 a brake t j = t jmax - 25c e rec t j = 25c e rec 0 0.4 0.8 1.2 1.6 2 0 5 10 15 20 25 30 35 40 45 50 i c (a) e (mws) t j = t jmax -25c e rec t j = 25c e rec 0 0.4 0.8 1.2 1.6 2 0 30 60 90 120 150 r g ( ) e (mws) t j = t jmax -25c e off e on t j = 25c e on e off 0 1 2 3 4 5 6 7 0 5 10 15 20 25 30 35 40 45 50 i c (a) e (mws) t j = t jmax -25c e off e on e on t j = 25c e off 0 1 2 3 4 5 6 7 0 30 60 90 120 150 r g ( ) e (mws) copyright vincotech 13 revision: 1
v23990-p580-a46-pm preliminary datasheet figure 9 brake igbt figure 10 brake igbt typical switching times as a typical switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) with an inductive load at with an inductive load at t j = 25/150 c t j = 25/150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 32 ? i c = 25 a r goff = 32 ? figure 11 brake igbt figure 12 brake fred igbt transient thermal impedance f red transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p )z thjh = f(t p ) at at d = tp / t d = tp / t r thjh = 0.71 k/w r thjh = 1.62 k/w brake t doff t f t don t r 0.001 0.01 0.1 1 0 5 10 15 20 25 30 35 40 45 50 i c (a) t ( s) t doff t f t don t r 0.001 0.01 0.1 1 0 30 60 90 120 150 r g ( ) t ( s) t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 1 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 1 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 copyright vincotech 14 revision: 1
v23990-p580-a46-pm preliminary datasheet figure 13 brake igbt figure 14 brake igbt power dissipation as a collector current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i c = f(t h ) at at t j = 175 oc t j = 175 oc v ge = 15 v figure 15 brake fred figure 16 brake fred power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i f = f(t h ) at at t j = 175 oc t j = 175 oc brake 0 50 100 150 200 250 300 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 50 0 50 100 150 200 t h ( o c) i c (a) 0 20 40 60 80 100 120 0 50 100 150 200 th ( o c) p tot (w) 0 5 10 15 20 25 0 50 100 150 200 th ( o c) i f (a) copyright vincotech 15 revision: 1
v23990-p580-a46-pm preliminary datasheet figure 1 rectifier diode figure 2 rectifier diode typical diode forward current as diode transient thermal impedance a function of forward voltage as a function of pulse width i f = f(v f ) z thjh = f(t p ) at at t p = 250 sd = t p / t r thjh = 0.851 k/w figure 3 rectifier diode figure 4 rectifier diode power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i f = f(t h ) at at t j = 150 oc t j = 150 oc input rectifier bridge 0 30 60 90 120 150 0 0.5 1 1.5 2 2.5 v f (v) i f (a) t j = 25c t j = t jmax -25c t p (s) z thjc (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 1 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 0 40 80 120 160 200 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 50 60 70 0 50 100 150 200 t h ( o c) i f (a) copyright vincotech 16 revision: 1
v23990-p580-a46-pm preliminary datasheet figure 1 thermistor typical ntc characteristic as a function of temperature r t = f(t) thermistor ntc-typical temperature characteristic 0 5000 10000 15000 20000 25000 25 50 75 100 125 t (c) r/ ? copyright vincotech 17 revision: 1
v23990-p580-a46-pm preliminary datasheet t j 150 c r g on 16 ? r goff 16 ? figure 1 output inverter igbt figure 2 output inverter igbt turn-off switching waveforms & definition of tdoff, teoff turn-on switching waveforms & definition of tdon, teon (t eof f = integrating time for e of f )( t eon = integrating time for e on ) v ge (0%) = -15 v v ge (0%) = -15 v v ge (100%) = 15 v v ge (100%) = 15 v v c (100%) = 600 v v c (100%) = 600 v i c (100%) = 35 a i c (100%) = 35 a t doff = 0.27 s t don = 0.09 s t eoff = 0.54 s t eon = 0.31 s figure 3 output inverter igbt figure 4 output inverter igbt turn-off switching waveforms & definition of t f turn-on switching waveforms & definition of t r v c (100%) = 600 v v c (100%) = 600 v i c (100%) = 35 a i c (100%) = 35 a t f = 0.11 s t r = 0.02 s switching definitions output inverter general conditions = = = i c 1% u ce 90% u ge 90% -20 0 20 40 60 80 100 120 140 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 time (us) % t doff t eoff uce ic u ge ic 10% uge 10% t don u ce3% -50 0 50 100 150 200 250 300 350 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 time(us) % ic uce t eon uge fitted i c10% i c 90% i c 60% i c 40% -20 0 20 40 60 80 100 120 140 0.2 0.25 0.3 0.35 0.4 0.45 time (us) % uce ic t f i c10% ic90% -50 0 50 100 150 200 250 300 350 2.9 3 3.1 3.2 3.3 3.4 3.5 time(us) % tr uce ic copyright vincotech 18 revision: 1
v23990-p580-a46-pm preliminary datasheet figure 5 output inverter igbt figure 6 output inverter igbt turn-off switching waveforms & definition of t eof f turn-on switching waveforms & definition of t eon p off (100%) = 21.01 kw p on (100%) = 21.01 kw e off (100%) = 2.82 mj e on (100%) = 2.49 mj t eoff = 0.54 s t eon = 0.31 s figure 7 output inverter fred figure 8 output inverter igbt gate voltage vs gate charge (measured) turn-off switching waveforms & definition of t r r v geoff = -15 v v d (100%) = 600 v v geon = 15 v i d (100%) = 35 a v c (100%) = 600 v i rrm (100%) = -79 a i c (100%) = 35 a t rr = 0.28 s q g = 1239.53 nc switching definitions output inverter ic 1% uge90% -20 0 20 40 60 80 100 120 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 time (us) % pof f eoff teoff u ce3% u ge10% -50 0 50 100 150 200 250 2.9 3 3.1 3.2 3.3 3.4 3.5 time(us) % p on e on t eon -20 -15 -10 -5 0 5 10 15 20 -50 0 50 100 150 200 250 300 qg (nc) uge (v) i rrm 10% i rrm 90% i rrm 100% trr -280 -240 -200 -160 -120 -80 -40 0 40 80 120 3 3.1 3.2 3.3 3.4 3.5 time(us) % id ud fitted copyright vincotech 19 revision: 1
v23990-p580-a46-pm preliminary datasheet figure 9 output inverter fred figure 10 output inverter fred turn-on switching waveforms & definition of t qr r turn-on switching waveforms & definition of t erec (t qrr = integrating time for q r r )( t erec = integrating time for e rec ) i d (100%) = 35 a p rec (100%) = 21.01 kw q rr (100%) = 7.47 c e rec (100%) = 3.31 mj t qrr = 1.00 s t erec = 1.00 s switching definitions output inverter t qrr -250 -200 -150 -100 -50 0 50 100 150 2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4 time(us) % id q rr -20 0 20 40 60 80 100 120 2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4 time(us) % p rec erec te rec copyright vincotech 20 revision: 1
v23990-p580-a46-pm preliminary datasheet flowpim 1 3rd gen 1200v / 35a v geon 15 v v geof f -15 v r g on 16 ? r goff 16 ? figure 1 igbt figure 2 fred typical average static loss as a functi on of output current typical average static loss as a function of output current p loss = f(i out )p loss = f(i out ) at at t j = 150 c t j = 150 c mi*cos from -1 to 1 in steps of 0.2 mi*cos from -1 to 1 in steps of 0.2 figure 3 igbt figure 4 fred typical average switching loss typical average switching loss as a function of output current p loss = f(i out ) as a function of output current p loss = f(i out ) at at t j = 150 c t j = 150 c dc link = 600 v dc link = 600 v f sw from 2 khz to 16 khz in steps of factor 2 f sw from 2 khz to 16 khz in steps of factor 2 output inverter application = = = = 3phase spwm general conditions mi*cosfi = -1 mi*cosfi = 1 0 10 20 30 40 50 60 70 80 90 100 0 10203040506070 iout (a) ploss (w) mi*cosf i= -1 mi*cosfi = 1 0 10 20 30 40 50 60 70 0 10203040506070 iout (a) ploss (w) fsw = 2khz fsw = 16khz 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 0 10203040506070 iout (a) ploss (w) fsw = 2khz fsw = 16khz 0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 0 10203040506070 iout (a) ploss (w) copyright vincotech 21 revision: 1
v23990-p580-a46-pm preliminary datasheet flowpim 1 3rd gen 1200v / 35a figure 5 phase figure 6 phase typical available 50hz output current typical available 50hz output current as a function mi*cos i out = f(mi*cos ) as a function of switching frequency i out = f(f sw ) at at t j = 150 c t j = 150 c dc link = 600 v dc link = 600 v f sw = 8khz mi*cos = 0.8 t h from 60 c to 100 c in steps of 5 c t h from 60 c to 100 c in steps of 5 c figure 7 phase figure 8 phase typical available 50hz output current as a function of typical available 0hz output current as a function mi*cos and switching frequency i out = f(f sw , mi*cos ) of switching frequency i outpeak = f(f sw ) at at t j = 150 c t j = 150 c dc link = 600 v dc link = 600 v t h = 90 c t h from 60 c to 100 c in steps of 5 c mi = 0 output inverter application th = 60c th = 100c 0 10 20 30 40 50 60 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 mi*cos 3 iout (a) th = 60c th = 100c 0 10 20 30 40 50 60 1 10 100 f sw (khz) iout (a) 1 2 4 8 16 32 64 -1.00 -0.80 -0.60 -0.40 -0.20 0.00 0.20 0.40 0.60 0.80 1.00 iout (a) 45.0-50.0 40.0-45.0 35.0-40.0 30.0-35.0 25.0-30.0 20.0-25.0 15.0-20.0 mi*cosfi fsw th = 60c th = 100c 0 10 20 30 40 50 60 1 10 100 f sw (khz) iout (apeak) copyright vincotech 22 revision: 1
v23990-p580-a46-pm preliminary datasheet flowpim 1 3rd gen 1200v / 35a figure 9 inverter figure 10 inverter typical available peak output power as a function of typical efficiency as a function of output power heatsink temperature p out =f(t h ) efficiency=f(p out ) at at t j = 150 c t j = 150 c dc link = 600 v dc link = 600 v mi = 1 mi = 1 cos =0.80 cos =0.80 f sw from 2 khz to 16 khz in steps of factor 2 f sw from 2 khz to 16 khz in steps of factor 2 figure 11 inverter typical available overload factor as a function of motor power and switching frequency p peak / p nom =f(p nom ,f sw ) at t j = 150 c dc link = 600 v mi = 1 cos =0.8 f sw from 1 khz to 16khz in steps of factor 2 t h = 90 c motor eff = 0.85 output inverter application 2khz 16khz 0.0 5.0 10.0 15.0 20.0 25.0 60 65 70 75 80 85 90 95 100 th ( o c) pout (kw) 2khz 16khz 90.0 91.0 92.0 93.0 94.0 95.0 96.0 97.0 98.0 99.0 100.0 0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 pout (kw) efficiency (%) switching frequency (khz) 100 150 200 250 300 350 400 motor nominal power (hp/kw) overload (%) 1 349 262 175 131 2 349 262 175 131 4 349 262 175 131 8 349 262 175 131 16 309 232 155 116 0,08 / 0,06 0,10 / 0,07 0,15 / 0,11 0,20 / 0,15 copyright vincotech 23 revision: 1
v23990-p580-a46-pm preliminary datasheet package outline and pinout outline pinout copyright vincotech 24 revision: 1
v23990-p580-a46-pm preliminary datasheet product status definitions formative or in design first production full production disclaimer life support policy as used herein: preliminary this datasheet contains preliminary data, and supplementary data may be published at a later date. vincotech reserves the right to make changes at any time without notice in order to improve design. the data contained is exclusively intended for technically trained staff. final this datasheet contains final specifications. vincotech reserves the right to make changes at any time without notice in order to improve design. the data contained is exclusively intended for te chnically tr ained st aff. target product status datasheet status definition this datasheet contains the design specifications for product development. specific ations may change in any manner without notice. the dat a contained is exclusively intended for technica lly trai ned staff. the information given in this datasheet describes the type of component and does not represent assured characteristics. for tes ted values please contact vincotech.vincotech reserves the right to make changes without further notice to any products herein to i mprove reliability, function or design. vincotech does not assume any liability arising out of the application or use of any product o r circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. vincotech products are not authorised for use as critical components in life support devices or systems without the express wri tten approval of vincotech. 1. life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. a critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright vincotech 25 revision: 1


▲Up To Search▲   

 
Price & Availability of V23990-P580-A46-P1-14

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X